350 research outputs found

    Short communication: Multi-component interactions causing solidification during industrial-scale manufacture of pre-crystallized acid whey powders

    Get PDF
    peer-reviewedAcid whey (AW) is the liquid co-product arising from acid-induced precipitation of casein from skim milk. Further processing of AW is often challenging due to its high mineral content, which can promote aggregation of whey proteins, which contributes to high viscosity of the liquid concentrate during subsequent lactose crystallization and drying steps. This study focuses on mineral precipitation, protein aggregation, and lactose crystallization in liquid AW concentrates (∼55% total solids), and on the microstructure of the final powders from 2 independent industrial-scale trials. These AW concentrates were observed to solidify either during processing or during storage (24 h) of pre-crystallized concentrate. The more rapid solidification in the former was associated with a greater extent of lactose crystallization and a higher ash-to-protein ratio in that concentrate. Confocal laser scanning microscopy analysis indicated the presence of a loose network of protein aggregates (≤10 µm) and lactose crystals (100–300 µm) distributed throughout the solidified AW concentrate. Mineral-based precipitate was also evident, using scanning electron microscopy, at the surface of AW powder particles, indicating the formation of insoluble calcium phosphate during processing. These results provide new information on the composition- and process-dependent physicochemical changes that are useful in designing and optimizing processes for AW

    Secondary organic aerosol formation from isoprene photooxidation under high-NO_x conditions

    Get PDF
    The oxidation of isoprene (2-methyl-1,3-butadiene) is known to play a central role in the photochemistry of the troposphere, but is generally not considered to lead to the formation of secondary organic aerosol (SOA), due to the relatively high volatility of known reaction products. However, in the chamber studies described here, we measure SOA production from isoprene photooxidation under high-NO_x conditions, at significantly lower isoprene concentrations than had been observed previously. Mass yields are low (0.9–3.0%), but because of large emissions, isoprene photooxidation may still contribute substantially to global SOA production. Results from photooxidation experiments of compounds structurally similar to isoprene (1,3-butadiene and 2- and 3-methyl-1-butene) suggest that SOA formation from isoprene oxidation proceeds from the further reaction of first-generation oxidation products (i.e., the oxidative attack of both double bonds). The gas-phase chemistry of such oxidation products is in general poorly characterized and warrants further study

    Cascading biomethane energy systems for sustainable green gas production in a circular economy

    Get PDF
    Biomethane is a flexible energy vector that can be used as a renewable fuel for both the heat and transport sectors. Recent EU legislation encourages the production and use of advanced, third generation biofuels with improved sustainability for future energy systems. The integration of technologies such as anaerobic digestion, gasification, and power to gas, along with advanced feedstocks such as algae will be at the forefront in meeting future sustainability criteria and achieving a green gas supply for the gas grid. This paper explores the relevant pathways in which an integrated biomethane industry could potentially materialise and identifies and discusses the latest biotechnological advances in the production of renewable gas. Three scenarios of cascading biomethane systems are developed

    Relationships of Biomass-Burning Aerosols to Ice in Orographic Wave Clouds

    Get PDF
    Ice concentrations in orographic wave clouds at temperatures between −24° and −29°C were shown to be related to aerosol characteristics in nearby clear air during five research flights over the Rocky Mountains. When clouds with influence from colder temperatures were excluded from the dataset, mean ice nuclei and cloud ice number concentrations were very low, on the order of 1–5 L^(−1). In this environment, ice number concentrations were found to be significantly correlated with the number concentration of larger particles, those larger than both 0.1- and 0.5-μm diameter. A variety of complementary techniques was used to measure aerosol size distributions and chemical composition. Strong correlations were also observed between ice concentrations and the number concentrations of soot and biomass-burning aerosols. Ice nuclei concentrations directly measured in biomass-burning plumes were the highest detected during the project. Taken together, this evidence indicates a potential role for biomass-burning aerosols in ice formation, particularly in regions with relatively low concentrations of other ice nucleating aerosols

    Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds

    Get PDF
    Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas-particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans-2,4-hexadienal, glyoxal, methylglyoxal, 2,3-butanedione, 2,4-pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas-phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere

    Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)

    Get PDF
    In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm^(−3) and CCN concentrations exceeding 10,000 cm^(−3). CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics

    The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation

    Get PDF
    Power-to-Gas (P2G) is a technology that converts electricity to gas and is termed gaseous fuel from non-biological origin. It has been mooted as a means of utilising low-cost or otherwise curtailed electricity to produce an advanced transport fuel, whilst facilitating intermittent renewable electricity through grid balancing measures and decentralised storage of electricity. This paper investigates the interaction of a 10MWe P2G facility with an island electricity grid with limited interconnection, through modelling electricity purchase. Three models are tested; 2016 at 25% renewable electricity penetration and 2030 at both 40% and 60% penetration levels. The relationships between electricity bid price, average cost of electricity and run hours were established whilst the levelised cost of energy (LCOE) was evaluated for the gaseous fuel produced. Bidding for electricity above the average marginal cost of generation in the system (€35–50/MWeh) was found to minimise the LCOE in all three scenarios. The frequency of low-cost and high-costs hours, analogous to balancing issues, increased with increasing shares of variable renewable electricity generation. However, basing P2G systems on low-cost (less than €10/MWeh) hours alone (999 h in 2030 at 60% renewable penetration) is not the path to financial optimisation; it is preferential to increase the run hours to a level that amortises the capital expenditure

    The potential of power to gas to provide green gas utilising existing CO2 sources from industries, distilleries and wastewater treatment facilities

    Get PDF
    The suitability of existing sources of CO2 in a region (Ireland) for use in power to gas systems was determined using multi criteria decision analysis. The main sources of CO2 were from the combustion of fossil fuels, cement production, alcohol production, and wastewater treatment plants. The criteria used to assess the suitability of CO2 sources were: annual quantity of CO2 emitted; concentration of CO2 in the gas; CO2 source; distance to the electricity network; and distance to the gas network. The most suitable sources of CO2 were found to be distilleries, and wastewater treatment plants with anaerobic digesters. The most suitable source of CO2, a large distillery, could be used to convert 461 GWh/a of electricity into 258 GWh/a of methane. The total electricity requirement of this system is larger than the 348 GWh of renewable electricity dispatched down in Ireland in 2015. This could allow for the conversion of electricity that would be curtailed into a valuable energy vector. The resulting methane could fuel 729 compressed natural gas fuelled buses per annum. Synergies in integrating power to gas at a wastewater treatment plant include use of oxygen in the wastewater treatment process
    corecore